Cumulative incidence in competing risks data and competing risks regression analysis.
نویسنده
چکیده
Competing risks occur commonly in medical research. For example, both treatment-related mortality and disease recurrence are important outcomes of interest and well-known competing risks in cancer research. In the analysis of competing risks data, methods of standard survival analysis such as the Kaplan-Meier method for estimation of cumulative incidence, the log-rank test for comparison of cumulative incidence curves, and the standard Cox model for the assessment of covariates lead to incorrect and biased results. In this article, we discuss competing risks data analysis which includes methods to calculate the cumulative incidence of an event of interest in the presence of competing risks, to compare cumulative incidence curves in the presence of competing risks, and to perform competing risks regression analysis. A hypothetical numeric example and real data are used to compare those three methods in the competing risks data analysis to their respective counterparts in the standard survival analysis. The source and magnitude of bias from the Kaplan-Meier estimate is also detailed.
منابع مشابه
Comparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملکاربرد مدل ریسک رقابتی در شناسایی عوامل موثر بر زمان بقای بیماران مبتلا به سرطان کولورکتال
Background and Objective: Colorectal cancer is the most common cancer of digestive system in Iran.The incidence of this cancer has increased in recent years.The aim of this study was to evaluate the survival rate and to define the prognostic factors in Iranian colorectal cancer patients using competing risk model. Materials and Methods: Data recorded from 1060 patients with colorectal cancer...
متن کاملSemiparametric analysis of mixture regression models with competing risks data.
In the analysis of competing risks data, cumulative incidence function is a useful summary of the overall crude risk for a failure type of interest. Mixture regression modeling has served as a natural approach to performing covariate analysis based on this quantity. However, existing mixture regression methods with competing risks data either impose parametric assumptions on the conditional ris...
متن کاملParametric Estimation in a Recurrent Competing Risks Model
A resource-efficient approach to making inferences about the distributional properties of the failure times in a competing risks setting is presented. Efficiency is gained by observing recurrences of the compet- ing risks over a random monitoring period. The resulting model is called the recurrent competing risks model (RCRM) and is coupled with two repair strategies whenever the system fails. ...
متن کاملطول عمر بیماران مبتلا به سرطان معده پس از عمل جراحی:تحلیلی بر اساس رقابت جویی خطرات
Background and Aim: Many researchers have studied survival (time to death) of gastric cancer patients. Although gastric cancer diagnosed in early stages can be cured by surgery, chance of relapse still exists after operation. Hence, we should consider both events, that is, relapse of the disease and death, in order to be able to make a more precise estimation for survival of the patients. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 13 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2007